【Leetcode】96.不同的二叉搜索树
96 不同的二叉搜索树
题目:
给定一个整数 n,求以 1 … n 为节点组成的二叉搜索树有多少种?
示例:
输入: 3
输出: 5
解释:
给定 n = 3, 一共有 5 种不同结构的二叉搜索树:
1 3 3 2 1
\ / / / \ \
3 2 1 1 3 2
/ / \ \
2 1 2 3
思路:
采用动态规划的思路求解
设要求的以1到n为节点组成的二叉搜索树的数目为G(n)。分析可知,1到n的任何一个节点都可以作为根节点,令以节点i为根节点的二叉搜索树的数目为f(i)。于是有:
1 |
|
两种特殊情况是n为0和n为1的情况,这两种情况对应的结果都为1。即:
1 |
|
然而,f(i)也与G函数有关系。f(i)代表的以i节点为根的可以生成的二叉搜索树的个数,等于其左子数个数和右子树个数的乘积。左子数的节点个数为i-1,右子树的节点个数为n-i。而且, G(n)和序列的内容无关,只和序列的长度有关,因此有:
1 |
|
综合以上公式,可以得到卡特兰数公式:
1 |
|
代码:
1 |
|
G(n)语句的执行次数为:
1 |
|
因此时间复杂度为O(n^2)
空间复杂度为O(n)